IAS Research Talk by Mitchell Ryan Distin: “Evolution in Space and Time: The Second Synthesis between Ecology, Evolutionary Biology, and the Philosophy of Biology”

Abstract: Change is the fundamental idea of evolution. Explaining the extraordinary biological change we see written in the history of genomes and fossil beds is the primary occupation of the evolutionary biologist. Yet it is a surprising fact that for the majority of evolutionary research, we have rarely studied how evolution typically unfolds in nature, in changing ecological environments, over space and time. While ecology played a major role in the eventual acceptance of the population genetic viewpoint of evolution in the synthetic era (circa 1918-1956), it held a lesser role in the development of evolutionary theory until the 1980s, when we began to systematically study the evolutionary dynamics of natural populations in space and time. As a result, early evolutionary theory was initially constructed in an abstract vacuum that was unrepresentative of evolution in nature. The subtle synthesis between ecology with evolutionary biology (eco-evo synthesis) over the past 40 years has progressed our knowledge of natural selection dynamics as they are found in nature, thus revealing how natural selection varies in strength, direction, form, and, more surprisingly, level of biological organization. Natural selection can no longer be reduced to lower levels of biological organization (i.e., individuals, selfish genes) over shorter timescales but should be expanded to include adaptation at higher levels and over longer timescales. Long-term and/or emergent evolutionary phenomena, such as multilevel selection or evolvability, have thus become tenable concepts within an evolutionary biology that embraces ecological and spatiotemporal change. As a result, evolutionary biology is currently suspended at an intermediate stage of scientific progress that calls for the organization of all the recent knowledge revealed by the eco-evo synthesis into a coherent and unified theoretical framework. This is where recent advancements in the philosophy of biology can be of particular use, acting as a bridge between the subdisciplines of biology and inventing new theoretical strategies to organize and accommodate the recent knowledge. Philosophers have recommended transitioning away from outdated philosophies that were originally derived from physics within the philosophical zeitgeist of logical positivism (i.e., monism, reductionism, and monocausation) and toward a distinct philosophy of biology that can capture the natural complexity of multifaceted biological systems within diverse ecosystems—one that embraces the emerging philosophies of pluralismemergence, and multicausality. Therefore, I see recent advances in ecology, evolutionary biology, and the philosophy of biology as laying the groundwork for another major biological synthesis, what I refer to as the Second Synthesis because, in many respects, it is analogous to the aims and outcomes of the first major biological synthesis (but is notably distinct from the inorganic movement known as the extended evolutionary synthesis). With the general development of a distinctive philosophy of science, biology has rightfully emerged as an autonomous science. Thus, while the first synthesis legitimized biology, the Second Synthesis autonomized biology and afforded biology its own philosophy.

Event is hybrid. To receive event link contact: andrea.gambarotto@gmail.com

This entry was posted in Uncategorized by Dre. Bookmark the permalink.

About Dre

Andrea is Maria Zambrano Fellow at the University of the Basque Country (UPV/EHU). He is into philosophy of science and German Idealism and does his best to argue it's not schizofrenia. Teleology, complex systems and cognition.