IAS-Research Talk (Online) by Giorgio Airoldi (UNED): «Beyond Fitness: Robustness as measure of non-selective evolutionary phenomena «

Date: 16/06/2020, at 11:30

To participate, please contact: guglielmo.militello@ehu.eus

ABSTRACT:

The last decades have seen the flourishing of accounts of evolutionary forces other than selection, many of which have been collected under the name of Extended Evolutionary Synthesis (ESS) (Laland et al. 2015). The range of phenomena targeted by these accounts spans from genetic mechanisms (e.g. Cherniak & Rodriguez-Esteban 2013, Kimura 1983, Wagner 2015) to developmental (e.g. Maynard Smith  et al. 1985), systemic (e.g. Kauffman 2000) and neo-Lamarckian (e.g. Koonin & Wolf 2009).

Although almost none of them denies the importance and even preponderance of selection in the history of life, and they rather aim at integrating non-selective phenomena into neo-Darwinism (a view known as ‘pluralism’), they are highly criticized by main-stream biology, that either limits or completely denies their evolutionary importance, often underling that their contribution to fitness is immaterial.

In this talk, I claim that fitness, being an intrinsically selective measure, should not be used to judge non-selective phenomena. I show how, by doing so, the theory of selection falls into the well-known pitfall of becoming a truism. To avoid the pitfall, I propose to recur to robustness as a selective-indifferent variable able to account for the contribution to evolution of non-selective forces. After defining robustness, I analyse some of the mechanisms that increase the robustness of a system and I suggest how non-selective phenomena can contribute to the appearance of such mechanisms in organisms. Finally, I propose a classification of evolutionary phenomena in terms of changes of form and function, and I show how fitness and robustness might jointly explain them in a unified, pluralistic account of evolution.

References

Cherniak, C.; Rodriguez-Esteban, R. (2013). Body maps on the human genome. Mol. Cytogenet. 6 (1): 61Kauffman, S., (2000). Investigations. Oxford University Press.

Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge University Press

Koonin, E. V., Wolf, Y. I (2009). Is evolution Darwinian or/and Lamarckian? Biology Direct, 4:42

Laland K.N., Uller T., Feldman M.W., Sterelny K., Müller G.B., Moczek A., Jablonka E., Odling-Smee J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proc. R. Soc. B 282: 20151019

Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., Wolpert, L. (1985). Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution. The Quarterly Review of Biology, (60)  3: 265-287

Wagner, A., (2011), The Origins of Evolutionary Innovations, Oxford University Press