IAS-Research Seminar by Miguel Escribano. “G.W. Leibniz y el problema del origen de los cuerpos orgánicos. Educción y preformacionismo”

Featured

Date and time: January 22, Tuesday, 11:30 a.m.

Location: Carlos Santamaría Building, Room B14.

Speaker: Miguel Escribano (UPV/EHU)

Title: “G.W. Leibniz y el problema del origen de los cuerpos orgánicos. Educción y preformacionismo”

Abstract

“El problema del origen de la vida, como hoy en día se plantea, no es directamente abordado durante la modernidad filosófica. Existen, sin embargo, algunos debates que podríamos considerar al respecto por su cercanía a este problema. El caso de G.W. Leibniz es especialmente relevante. Por un lado, su Dinámica tiene la pretensión de convertirse en una ‘ontología general’ que de cuenta de todas las parcelas de lo real en términos de fuerza y forma. En este sentido, su visión de la naturaleza implica una cierta continuidad y coordinación entre las dinámicas características a los tres reinos naturales. Este programa ontológico no está exento de contradicciones. Leibniz nos aporta algunas herramientas para abordar estas contradicciones. En esta presentación haré mención a dos de ellas: por un lado, la teoría de la educción (importancia del pensamiento químico) y, por otro lado, la idea de preformación (importancia del pensamiento biológico). Considerando ambas teorías se plantea el siguiente problema: ¿existe una incompatibilidad entre la perspectiva diacrónico-embriogenética (biológica) que defiende que toda forma orgánica procede de otra forma orgánica y la perspectiva sincrónico-emergente (química) que defiende por su parte que la dinámica organizacional que caracteriza a un organismo educe a un cierto nivel de complejidad natural?”

IAS-Research Talk by Iñaki San Pedro: Degrees of Epistemic Opacity

Featured

Date and time: February 19, Tuesday, 11:30 a.m.

Location: Carlos Santamaría Building, Room B14.

Speaker: Iñaki San Pedro (UPV/EHU)

Title: Degrees of Epistemic Opacity

Abstract:

The paper distinguishes two senses of “epistemic opacity” in computer simulations, namely a qualitative sense and a quantitative sense, and explores their relation to actual simulating and modelling practices.

From a qualitative point of view, the notion of “epistemic opacity“ in computer simulation seems to have the same significance and implications for any computer simulations. That is, from a qualitative point of view, computer simulations seem to be equally opaque —i.e. we open the black box, and find it (always) dark! In this sense “epistemic opacity” expresses the fact that when a computer simulation is performed there is an “epistemic leap” associated to it. This kind of epistemic leap is characteristic rather than of a specific model or simulation, of the fact that a simulation is performed.

On the other hand, “epistemic opacity” can also be approached from a quantitative point of view. The questions to be asked then are rather different, e.g. is the “epistemic leap” noted above always of the same size? or are all computer simulations equally opaque, i.e. when we open the back box and find it dark, is it always as dark? The paper argues that (from this quantitative point of view), computer simulations display degrees of “epistemic opacity” (with the limit of non-opacity set in analycity). I will not discuss here whether these degrees of “epistemic opacity” can be measured (i.e. exactly quantified), or attempt provide a method for doing that. I will claim nevertheless that actual degrees of “epistemic opacity” are tightly related to what we can call the “complexity of the computational process”, which is associated for instance to the particular design of the computing software at work, specific computer settings, or to hardware limitations. With this idea of complexity in mind, I will claim, the more complex a computational process is, the more (quantitatively) epistemically opaque will the simulation result.

I will note finally that a good deal of methodological decisions taken by scientist and modellers when performing computer simulations —i.e. typical tricks-of-the-trade such as parametrisation, use of expert knowledge, scaling, etc.—, which constitute an important part of current scientific practices in the field, are precisely aimed at reducing such complexity. I will conclude thus that actual scientific practices (or part of these, at least) in fact reduce (quantitative) “epistemic opacity.” This opens new and interesting questions such as whether actual scientific practices can manage to reduce “epistemic opacity” to the limit of analycity (thus eliminating “epistemic opacity” also in a qualitative sense), whether specific scientific practices can be said to reduce in some (qualitative) sense some of the uncertainties that computer simulations involve, or whether they have an impact on the reliability or confidence of specific computer simulations (possibly of the very same system).

Open call for a PhD position on ‘minimal metabolism’ (European Innovative Training Network)

Featured

Open call for a PhD position on ‘minimal metabolism’

A. Under the supervision of Kepa Ruiz-Mirazo – University of the Basque Country (Spain)

[Co-supervision: Christoph Flamm – University of Vienna (Austria)]

B. Within the European (Marie Curie) ITN Project ‘ProtoMet’

[Protometabolic pathways: exploring the chemical roots of systems biology]

NOTE: This project has received funding from the European Union’s Horizon 2020 research and  innovation programme under the Marie Skłodowska-Curie grant agreement No 813873.

C. Great opportunity for Early Stage Researchers (‘ESR’s – see below) highly motivated to investigate a deep scientific question, the origins of metabolism, working across several disciplines (physics, chemistry, biology, computer science, philosophy of science) but accurately and methodically, in close collaboration with other colleagues from academia and industry.

D. Training includes internships, secondments and a variety of technical courses/modules.

E. Transversal and transferable capacities to be developed: communication and team-work skills, among others.

F. Funding guaranteed for 36 months (salary & research support).

 

Requirements

All candidates must possess a Master’s degree or equivalent by the deadline for application (alternatively, a total of 240 ECTS — combining the B.Sc. and/or M.Sc. degrees), which allow them to enter a Spanish PhD program in Sciences or Humanities at the University of the Basque Country (UPV/EHU).

The applicant must be proficient in English, both written and spoken. Computer skills will also be valued (good command of python and C++, in particular).

Eligibility according to the Marie Curie Training Program

  • Researcher status: Early-Stage Researchers (ESRs) are young researchers who, at the date of recruitment (the starting date indicated in the contract), are in the first four years (fulltime equivalent research experience) of their research careers and have not been awarded a doctoral degree.
  • Nationality: Applicant ESRs can be of any nationality.
  • Mobility requirements: Applicant ESRs must not have lived or carried out their main activity (work, studies, etc.) in the country of the recruiting beneficiary (University of the Basque Country) for more than 12 months in the 3 years immediately prior to the date of recruitment (compulsory national service, short stays or holidays, and time spent as part of a procedure for obtaining refugee status under the Geneva Convention will not be taken into account).

 

Procedure

Interested applicants should contact Kepa Ruiz-Mirazo by e-mail (kepa.ruiz-mirazo@ehu.eus), before January 15 (2019), and provide him with the following documents/information:

  • A detailed CV
  • A copy of the Bachelor’s and Master’s certificates and the respective Transcript of Records
  • Summary of the Master’s degree thesis
  • A letter of motivation, including a declaration of whether s/he is applying to some other ESR in the ProtoMet network and, in that case, in which order of preference.
  • Email contact of two names of referees to be contacted for recommendation letter

 

More info

For some additional information, you can download the following pdf.

 

Research Workshop Philosophy of Biology and Cognitive Sciences

Call for participation (now open)

The Research Workshop on Philosophy of Biology and Cognitive Science (PBCS) is an annual encounter of young scholars that aims at bringing together researchers from different disciplinary backgrounds: philosophers, cognitive scientists, and biologists working on issues of common interest. In this workshop, young researchers can present their ideas and participate in the discussions, as well as attend the conferences of keynote speakers. Its main purposes are to serve as a tool for enhancing research through discussion and to promote the interdisciplinary of the ideas presented. In its ninth edition, the organizers would like to keep encouraging young researchers to participate in this fresh and distinctive forum.

The call is addressed to graduate, master, and PhD students, as well as doctors who finished their dissertations within the last three years, and who are working on the areas of Philosophy of Biology and Cognitive Science.

Location: Carlos Santamaria Center Room 4, San Sebastian

Date: 9-10 May

For further information, please contact pbcs9workshop@gmail.com or visit our website

Reading group on Evolution and Cognition

 

1. Objectives: 

  • Introduce basic notions of evolutionary biology and physiology of the nervous system.
  • Understand current discussion on the evolution of human cognition.
  • Discuss the role of the interaction between organism and environment in the evolution of the nervous system.

2. Format

Eleven reading seminars lasting 1.5h around different authors and topics that aim to explain the evolution of the nervous system and cognition in human beings. In each session, one participant will shortly (20min) present the topic in order to facilitate the discussion. After every session, this participant will prepare a summary of the discussion. The final transcript will be evaluated for feedback by the coordinator.

3. Schedule, topics, and readings

Seminars will take place from January to June 2019, on alternate Thursdays from 15:00 to 16:30h, open to online and in-person participation at the Carlos Santamaría Center Seminar 14.

Session Date Topic Bibliography
1. January, 10 Introduction Moreno, A., & Lasa, A. (2003). From basic adaptivity to early mind. Evolution and Cognition, 9(1).

Rosslenbroich, B. (2014). On the origin of autonomy: a new look at the major transitions in evolution (Vol. 5). Springer Science & Business Media. Chapters 8, 10.1 y 10.2

2. January, 24 Evolution of the nervous system I. Dynamic Systems Barandiaran, X., & Moreno, A. (2006). On what makes certain dynamical systems cognitive: A minimally cognitive organization program. Adaptive Behavior, 14(2), 171-185.
3. February, 7 Evolution of the nervous system II. Plant and animal cognition Calvo Garzón, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19(3), 155-171.

Keijzer, F. (2015). Moving and sensing without input and output: Early nervous systems and the origins of the animal sensorimotor organization. Biology & Philosophy, 30, 311–331

4. February, 21 Evolution and Agency Barandiarán, X. (2008). Mental Life. A naturalized approach to the autonomy of cognitive agents. [Thesis Capítulos 5 y 6]
5. 7 March The 4 dimensions of evolution Jablonka, E., & Lamb, M. J. (2007). Précis of evolution in four dimensions. Behavioral and Brain Sciences, 30(4), 353-365.
6. March, 21 Cognitive functions: working memory and the frontal lobe Damasio, El error de Descartes. capítulos 2,3 y 4.

Frederick L. Coolidge, Thomas Wynn. 2009.The Rise of Homo Sapiens, The Evolution of Modern Thinking [capítulo 3]

7. April, 4 Evolution and reproduction Gruss, L. T., & Schmitt, D. (2015). The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation. Phil. Trans. R. Soc. B, 370(1663), 20140063.
8. April, 18 Cultural Evolution I Portin, P. (2015). A comparison of biological and cultural evolution. Journal of genetics, 94(1), 155-168.

Lewens, T. (2015). Cultural evolution: conceptual challenges. OUP Oxford (capítulo 1)

9. May, 2 Cultural Evolution II Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution. Annals of human biology, 36(5), 562-572.

Laland, K., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary ecology, 30(2), 191-202.

10. May, 16 Evolution and 4E Cognition Barrett, L. The evolution of cognition: a 4E perspective. The Oxford Handbook of 4e Cognition. New York: Oxford UP.

Malafouris, L. Bringing things to mind. In The Oxford Handbook of 4E Cognition.

11. May, 30
Congress July, 10-14 4E Cognition Theories

4. Coordination and more information

In order to join the reading group or request further information, please contact the coordinators:

Enara Garcia (enara.garcia.otero@gmail.com)

Guglielmo Militello (guglielmo.militello@ehu.eus)

Alejandra Martínez Quintero (alejandra.mtz.quintero@gmail.com)

December 18, IAS-Research Talk by Charles Wolfe (Ghent University): Philosophy of biology before biology: a methodological provocation

Date and time: December 18, Tuesday, 11:30 a.m.

Location: Carlos Santamaría Building, Room B14.

Speaker: Charles Wolfe (Ghent University)

Title: “Philosophy of biology before biology”: a methodological provocation

Abstract:

Basing myself on work forthcoming in a volume entitled Philosophy of Biology before Biology (coedited w. C. Bognon-Küss), I argue for a conception I term ‘philosophy of biology before biology’, focusing on the theoretical ‘world’ or ‘context’ out of which the science ultimately called ‘biology’ emerged. This historico-philosophical approach to biology’s genesis is neither internalist study of biological doctrines, nor a reconstruction of the role philosophical concepts might have played in the constitution of biology as science; it looks more at the interplay between metaphysical and empirical issues. This study does not just have implications for understanding the relations between philosophy and biology in the mid- to late 18th century; it should also have an impact on our present understanding of philosophy of biology, given that it is necessarily conditioned by a very specific history and historiography (particularly evolution-centred). Further, ‘philosophy of biology before biology’ sheds a different light on our understanding of how biology as a science of life became unified.

International Workshop: Conceptual Issues on ‘Life, Mind and Society’ in Dialogue with Alvaro Moreno

Date: 19-20 November 2018

Location: Faculty of Education, Philosophy and Anthropology (Salón de Grados) [Ibaeta Campus, Donostia-San Sebastián, Basque Country, Spain]

Keynote Speakers: William Bechtel (University of California San Diego), James Griesemer (University of California, Davis), Alicia Juarrero (University of Miami), Alvaro Moreno (UPV/EHU), Ana Soto (University of Tufts).

Full Program (pdf)

 

IAS-Research Talk by Nathaniel Barrett (University of Navarra): “The contrasts of feeling: Toward an integrated theory of affect and consciousness”

Date and time: November 27, Tuesday, 11:30 a.m.

Location: Carlos Santamaría Building, Room B14.

Speaker: Nathaniel Barrett (“Mind-Brain Group,” Institute for Culture and Society, University of Navarra)

Title: The contrasts of feeling: Toward an integrated theory of affect and consciousness

Abstract: 

What is affect and how does it relate to other qualities of experience? Affect presents special challenges to explanation that are well known to investigators of pleasure and pain but normally do not enter into philosophical and scientific discussions of consciousness. In this paper I present an attempt to integrate affect and consciousness into a single theory based on the idea that affect is not a specially discriminated quality of experience but rather a function of the way the “feeling self” expands and contracts in relation to the qualities of feeling (Arnold 1960; Frederickson 1995). The key term for the elaboration of this thesis is contrast. Drawing from theories of the nonlinear dynamics of perceptual categorization (e.g. Freeman 1999; Spivey 2007) I propose that perceptual experience is constituted by complex contrasts specified by sensorimotor dynamics within a continually evolving, high-dimensional “contrast space” (cf. the “quality space” in Clark 1993; 2000). For this approach, affect pertains to “implicit” higher-order contrasts that obtain between successive contrast spaces of perceptual dynamics. That is, the affective tone of a perceptual feeling is not determined by perceptual qualities themselves but rather by the way in which these qualities are specified within an evolving contrast space that “expands” and “contracts.” I further suggest that the evolving contrast space of experience can be thought of as a dynamically constituted “feeling self.”

 

IAS-Research Talk by Denis Walsh (University of Toronto) “Summoning and Sedimentation: Concepts for an agent-centred evolutionary biology”

Date and time: December 11, Tuesday, 11:30 a.m.

Location: Carlos Santamaría Building, Room B14.

Speaker: Denis Walsh (University of Toronto)

Title: Summoning and Sedimentation: Concepts for an agent-centred evolutionary biology

Abstract:

I attempt to motivate an agent-centred ‘contact’ theory of evolution. I draw on debates in the philosophy of mind to illustrate a distinction between ‘foundationalist theories’ and ‘contact theories’. Traditional approaches to thought, perception, knowledge, linguistic meaning, are foundationalist. They start with the separation of an ‘inner’ mental realm from an outer realm, and posit mental ‘givens’ as the foundational elements. Foundationalist theories of the mind have well-known structural problems. Two, in particular, appear to be insuperable: (i) underdetermination (skepticism), and (ii) the missing agent. I argue that gene-centred evolutionary theory is also a foundationalist theory. It too suffers from the same problems. One prominent solution in the philosophy of mind is to adopt a wholly different kind of theory, a contact theory of the agent. I argue that a contact theory can have the same salutary consequences for the understanding of evolution as it does for mental phenomena.