OUTONOMY project: Fleshing out autonomy beyond the individual

Featured

We are happy to announce that the Outonomy (“Fleshing out autonomy beyond the individual”) project got officially funded by the Spanish Ministry of Science and Innovation. The project is co-lead by Leonardo Bich and Xabier E. Barandiaran.

As part of this project we got awarded with a PhD Scholarship. Please help us find and match the best candidates by sharing this link to our pre-application call: https://www.ias-research.net/?p=4525

Project summary and main research lines

The project aims to expand theories of autonomy beyond classical conceptions of the individual by including integrative, relational, collective and environmental dimensions into it.

The concept of autonomy, understood as the capacity of a system to set up and follow the norms of its own functioning, is of central relevance to contemporary science and society. Recently, the increasing acknowledgement of the deep interconnectedness, mutual dependence and multi-scale embeddedness of several natural and social phenomena, has directly challenged the very idea of autonomy, together with those of individuality and identity, and the possibility of its applications to scientific and social challenges.Building on top of 25 years of philosophical and trans-disciplinary research at the IAS-Research Center for Life, Mind and Society of the University of the Basque Country (UPV/EHU), centred on a naturalized theory of autonomy in biological and cognitive sciences, this project aims to expand theories of autonomy beyond classical conceptions of the individual by including integrative, relational, collective and environmental dimensions into it.

To do so the project pursues 4 main goals:

1- To develop an account of integration in autonomous systems, as an organizational principle to understand how ‘physiological’ cohesiveness emerges within and across systems.

2- To understand how inter-actions between autonomous systems can give rise to supra-individual or collective forms of autonomy and how these can alter the autonomy of the former.

3- To investigate the extension of autonomous systems into their environment (from prebiotic scaffolds to technology) to achieve viability and coordinate regulatory self-governing processes.

4- To address the issue of sustainability (at different scales) of new eco and socio-ecological systems emerging from previously independent autonomous systems.

In order to achieve these trans-disciplinary goals, the methodology involves naturalist conceptual analysis and synthesis based on an active dialogue with empirical research, computational and mathematical models and scientific theories. The profiles of the 5 research team members in philosophy of science, philosophy of biology and complex systems is complemented by an international work team of 24 collaborators including social scientists, computer modellers, network and data analysts, biologists and environmental scientists.

If you want to know more about the project, we recommend you read and download our project description document by clicking on the image below:

You can follow the project updates on ResearchGate at the following link: https://www.researchgate.net/project/OUTONOMY-Fleshing-Out-Autonomy-Beyond-the-Individual

On the origin of the tRNA molecule – IAS-Research Talk by Massimo Di Giulio

Dr.Massimo Di Giulio (Laboratory for Molecular Evolution, Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, Napoli, Italy) will be giving an IAS-Research Talk entitled “On the rigin of the tRNA Molecule” on Tuesday, June 11th 2013, at 11.30 at the Carlos Santamaria Building Room B14.

Abstract

A model has been proposed suggesting that the tRNA molecule must have originated by direct duplication of an RNA hairpin structure [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199–214]. A non-monophyletic origin of this molecule has also been theorized [Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403–414]. In other words, the tRNA genes evolved only after the evolutionary stage of the last universal common ancestor (LUCA) through the assembly of two minigenes codifying for different RNA hairpin structures, which is what the exon theory of genes suggests when it is applied to the model of tRNA origin. Recent observations strongly corroborate this theorization because it has been found that some tRNA genes are completely separate in two minigenes codifying for the 5’ and 3’ halves of this molecule [Randau, L., et al., 2005a. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5’ and 3’ halves. Nature 433, 537–541]. It is shown that these tRNA genes codifying for the 5’ and 3’ halves of this molecule are the ancestral form from which the tRNA genes continuously codifying for the complete tRNA molecule are thought to have evolved. This, together with the very existence of completely separate tRNA genes codifying for their 5’ and 3’ halves, proves a non-monophyletic origin for tRNA genes — as a monophyletic origin would exclude the existence of these genes which have, on the contrary, been observed.